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The unicellular ciliate, Tetrahymena has receptors for hormones of the higher
ranked animals, these hormones (e.g. insulin, triiodothyronine, ACTH, histamine,
etc.) are also produced by it and it has signal pathways and second messengers for sig-
nal transmission. These components are chemically and functionally very similar to
that of mammalian ones. The exogenously given hormones regulate different func-
tions, as movement, phagocytosis, chemotaxis, cell growth, secretion, excretion and
the cells’ own hormone production. The receptors are extremely sensitive, certain hor-
mones are sensed (and response is provoked) at 10–21 M concentration, which makes
likely that the function could work by the effect of hormones produced by the
Tetrahymena itself. The signal reception is selective, it can differentiate between
closely related hormones. The review is listing the hormones produced by the
Tetrahymena, the receptors which can receive signals and the signal pathways and sec-
ond messengers as well, as the known effects of mammalian hormones to the life func-
tions of Tetrahymena. The possible and justified role of hormonal system in the
Tetrahymena as a single cell and inside the Tetrahymena population, as a community
is discussed. The unicellular hormonal system and mammalian endocrine system are
compared and evolutionary conclusions are drawn.
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Introduction

The investigations on the hormonal system of Tetrahymena started at the
early seventies of the last century. At first the reaction of Tetrahymena to hor-
mones characteristic to the higher vertebrates were observed and on the positive
basis of these experiments the hormones of the higher ranked animals as well, as
the structure of receptors and the signal transduction pathways were studied. The
results of the experiments show that a complete hormonal system is present and
working inside the individual Tetrahymena and between the members of a
Tetrahymena population [1–5]. The aim of the present review is to give the de-
tailed analysis of this system and to synthesize the data won by different experi-
ments.

Hormones of the higher ranked animals produced by Tetrahymena

Amino acid-type hormones

The presence of serotonin (5-hydroxytryptamine, 5HT) was demonstrated
as early, as 1966 [6] in Tetrahymena. The presence of the hormone was biochemi-
cally as well as immunocytochemically justified [7, 8]. The serotonin metabolite
5-hydroxyindole acetic acid was also found and it was supposed that a sero-
tonergic system is functioning in Tetrahymena [7], and serotonin is a chemical
mediator [9]. Short and long starvation elevated the level of the hormone [10]. Se-
rotonin in an extremely low concentration can induce the production of other hor-
mones [11]. Monoamino oxydase of Tetrahymena has greater affinity to serotonin
than to dopamine [12].

Serotonin is the precursor of melatonin. Melatonin was also found in
Tetrahymena [13], and it is produced, stored and secreted by it. The synthetic
pathway is similar to the mammalian one [14]. Prolonged light exposure sup-
pressed melatonin synthesis and secretion. Pretreatment with melatonin (hor-
monal imprinting) elevated the melatonin content of the cells and their medium
alike [15].

Tetrahymena contains histamine, which is produced by the participation of
histidine decarboxylase (HDC) enzyme [16]. This enzyme is present in
Tetrahymena and its gene is similar to the mammalian one, while completely dif-
ferent from the prokaryotic HDC-gene [17]. The hormone also can be taken up
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from the medium and this histamine can also be localized in the nucleus of the cell
[18, 19].

Triiodothyronine (T3) or thyroxine (T4) were not demonstrated by radio-
immunoassay technique [20], however, by using immunocytochemical confocal
microscopy [10] or flow cytometry [21], the presence of T3, and the changes of its
content were observed. The isotopically labelled T3 has been incorporated into the
nucleus of the cells [19].

The biosynthesis of catecholamines was observed in Tetrahymena as early
as 1966 [6] and an adrenergic control system was supposed in 1967 [22]. The en-
zymes related to catecholamine biosynthesis (monoamine oxydase, catechol-O-
methyl transferase and GTP cyclohydrolase) were also found [12, 23]. The main
catecholamine is dopamine. There is a tyrosine – L-DOPA conversion extracel-
lularly, which is followed by the uptake of this substance by the cells and this is
transformed enzymatically to dopamine inside [24]. In addition to dopamine, epi-
nephrine and kinurenine are synthesized and secreted by the cells [25].
Arteficially added dopamine or L-DOPA is toxic to the cells and decreases nore-
pinephrine synthesis in a very low physiological concentration [26, 27].

Peptide hormones

Insulin immunoreactivity was observed in Tetrahymena and its medium
[28–30], and the effect of this hormone was similar to the mammalian insulin in
bioassays [31]. The effect of insulin was inhibited by anti-mammalian insulin an-
tibody. In addition to this “standard” insulin, guinea pig insulin was found, which
has an unusual structure [31]. Exogenous (125I) insulin is also internalized and this
can appear in the nucleus of the cell in a heterochromatic localization [32].

The POMC-hormone, adrenocorticotropine (ACTH) is also produced by
Tetrahymena as well as endorphin [33–36]. This latter was found mainly in the
cortical structures, oral field, cilia and nuclear envelope [37]. Long-lasting starva-
tion increased the production of both POMC hormones [10]. In addition,
thyrotropic hormone (TSH) and gonadotropic hormone (FSH and LH) are also
present [38].

Relaxin [39], somatostatin [40] and endothelin [41] are also synthesized by
it. Epidermal growth factor (EGF) is diffusely localized in the region of
cytopharynx [42]. The cytokine, interleukin 6 (IL-6) is localized in the oral appa-
ratus and in the nuclear envelope [43]. Salmon type calcitonin was also demon-
strated [29].
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Lipid hormones

Tetrahymena does not contain endogenous steroid hormones, however,
imprintig with the given hormones can induce the production of dihydro-
epiandrosterone (DHEA) and DHEA-sulphate in a higher concentration and in
lesser concentrations hydrocortisone, testosterone and estradiol [44, 45]. It has a
special form of alpha-hydroxysteroid dehydrogenase, which functionally differs
from the mammalian and bacterial enzymes [46]. It can transform testosterone and
convert progesterone to pregnenolone [47, 48].

Prostaglandin (PGF2) is also present in Tetrahymena [20] and it is possibly
needed for the growth of Tetrahymena, as aspirin, which inhibits prostaglandin
synthetase also inhibits the multiplication of it [49].

Endocannabinoids, having a lipid nature are also produced and present in
Tetrahymena, as well, as the related N-acetylethanolamines and by this, an endo-
cannabinoid system is supposed [50, 51].

The hormone receptors of Tetrahymena

The insulin receptor

The first observation on the effect of insulin to Tetrahymena was done at
1975 [52]. In this experiments insulin stimulated the glucose uptake of the cell.
Later the receptor localization [53, 54] and the nature of the binding sites was also
justified, when these were isolated [55] and were compared to the mammalian in-
sulin receptor [56]. The demonstrated receptor was localized in the ciliary mem-
brane [57], however, intracellular insulin binding was also observed [58]. The
intracellular localization was found on the nucleus and certain vesicles. The nu-
clear mebrane specifically binds insulin [59], and insulin has a stronger affinity to
nuclear membrane receptors than to that of the plasma membrane [60]. The bind-
ing capacity of nuclear membrane receptors diminishes after starvation [61]. Insu-
lin receptor development can be induced by imprinting (insulin pretreatment) [62]
or by rat liver receptor antibody [63] and these receptors behave as “classical” in-
sulin receptors. The plasma and nuclear membrane receptor’s specificity is similar
[64]. The cells distinguish between insulins according to their amorphous or crys-
talline form, and their bovine or porcine origin [65]. The insulin binding of plasma
membrane receptors can be disturbed by the presence of very low concentrations
of other hormones (e.g. endorphin and serotonin in 10–18 M) [66, 67] as well as the
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lysosomal protein degradation blocker, bacitracin [68]. Starvation also influences
the insulin production, binding and uptake of the cells [69]. Higher concentrations
(10–3–10–5 M) of insulin down regulate the insulin receptors, while lower concen-
trations (10–6–10–18 M) provoke hormonal imprinting [70]. The combinations of
different peptide molecules as imprinters do not disturb each other [71].

The histamine receptor

The sensitivity and reaction of Tetrahymena to histamine was demon-
strated as early as 1973 [72]. Later the localization of these receptors on the cilia
was also cleared [73], however, the cilia of the oral field as well as the interciliar
membrane regions did not bound histamine. The histamine binding was blocked
by histamine itself [74] and histamine antagonists. Structurally different antihista-
mines did not do this [75]. Concanavalin-A – which is bound by the same recep-
tor – dose-dependently inhibited the histamine effect in phagocytosis test [76].

Other receptors

Receptors for triiodothyronine (T3), which are confined to cilia and the
mouth region were also found [77]. Thyroxine (T4) was localized on the cilia as
well, as in pinocytotic vacuoles and the nucleus [53]. Steroid receptors are not
present on or inside the Tetrahymena, however, they can be induced by DHEA or
dexamethasone pretreatment [44, 78]. Receptors for opiates [79], similar to that of
the mammalian brain were also found [80, 81] and benzodiazepine receptors were
also present [82]. Many other hormones can influence the behavior of Tetra-

hymena (see later), but the receptors of them were not analyzed. As some lectins
bind to hormone receptors, the binding of these was also studied and found [83].
Histamine and histamine antagonists altered lectin binding [75].

Signal transduction and second messengers of Tetrahymena

Adenylyl- and guanylyl-cyclases [84–87] as well, as their products, cAMP
and cGMP are present in Tetrahymena. The adenylyl cyclase seems to be a highly
unique subtype of this enzyme group, which is restricted to ciliates [88]. The cy-
clic AMP formation by the enzyme is influenced by the Ca2+ and K+ content [89,
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90] and by biogenic amines [91], natural amino acids [92], and by hormones, e.g.
epidermal growth factor [93], epinephrine, insulin, glucagon, as well as the cPDE
blocker theophylline [94, 95]. Some non-hormone agents, e.g. adrenergic agonist
isoproterenol also can influence cAMP synthesis [96]. Cyclic AMP and theo-
phylline are influencing the function of the cell in the same direction, increasing
phagocytosis, while sugar uptake is decreased [95, 97]. Adenylate cyclase activity
was demonstrated in/on pinocytotic vesicles, while in case of growth stimulation
it appears in associaton with the plasma membrane and inside many dense bodies
[98].

The activity of guanylyl cyclase is calcium regulated [99] as it is in verte-
brates. A hormone (insulin) treatment causes its localization to cilia and near the
plasma membrane [86].

Protein kinase is also present in Tetrahymena and in the presence of Ca2+ it
is activated [100]. Protein kinase C activity helps cell survival and proliferation
[101]. Calcium dependent calmodulin was also found and there are proteins inter-
acting with calmodulin [102]. The calcium-calmodulin system regulates guany-
late cyclases in the ciliary membrane [103].

Inositol phospholipids are present in Tetrahymena forming a functional
signaling system [104], similar to that of the higher eukaryotes [105–107]. The
phospholipases are coded by five genes, two of them are similar to bacterial PLC-
genes and three are similar to metazoan PLC genes [108]. The phospholipases
(PLA2, PLC and PLD) are active in Tetrahymena, participating in many signal
transduction systems [105, 109–111]. The co-operation of the enzymes (e.g. PLC
and PLD) could rescue Tetrahymena from “low density death” [112]. Hormones,
as insulin or vasopressin influence the synthesis of phosphoinositides [113–115],
which effect is similar to that of vertebrates. There is a cross-talk between the me-
tabolites of phospholipids and sphingomyelin [116]. The phosphoinositol system
seems to be participating in the mechanism of hormonal imprinting [117].

Effect of hormones on Tetrahymena

Insulin

Insulin has a very strong and heterogeneous effect on Tetrahymena, as it
can be bound by the receptors of the cells [118]. The hormone stimulates glucose
uptake [52] and utilization [119]. Cell growth was also enhanced [120, 121] as
well as ciliary regeneration [122]. At the same time it decreases the phagocytotic
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capacity [123], and movement behavior was also influenced [124]. At very low
(10–21 M) concentration it increased the histamine level (production) of the cells
[125]. The hormone reduced the activity of mitochondrial dehydrogenases in six
taxa of Tetrahymena [126]. Under the effect of the hormone a lectin-like molecule
was discharged from the mucocysts [127]. A single treatment with insulin caused
a quantitative decrease in fast movements and an increase in slow movement

[128]. The hormone has a positive chemoattractant effect on Tetrahymena [129] in
contrast to Blepharisma [130]. The effect of insulin was influenced by the milieu
in which the cells were treated or the presence of other hormones [131]. The
uridine intake and incorporation was decreased by the hormone [132, 133].

A very important effect of insulin that it saves the life of the Tetrahymena

population when the cell density is very low [134–136], as in this case adequate
nutrition alone is not enough for life and proliferation: growth factors are needed
[137–139]. The 22–30 fragment of the B chain have this important role. A very
low, pico- or femtomolar concentration of the hormone is enough for rescuing the
cells [140] and this can be produced and secreted by the mass of the cells [141].

ACTH and TSH

Adrenocorticotropic hormone (ACTH) decreased the phagocytic capacity
[123], as well, as the uridine incorporation [132] of Tetrahymena. It was able to
stimulate the multiplication of the cells [142].

Thyrotropin (TSH) regulates triiodothyronine (T3) production of the cells
[21], however, epinephrine is regulated by it [143]. TSH also influences
chemotaxis [144].

Epidermal growth factor (EGF)

EGF influences cell growth of Tetrahymena [121, 144], increasing the ac-
tivity of different kinases which participate in the initiation of cell division [93]. It
also enhances DNA, RNA and protein synthesis [145].

Opioids

Nanomolar concentration of opiates inhibits phagocytosis and this effect is
antagonized by naloxone [146, 147].
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Vasopressin and oxytocin

Oxytocin, which is chemically related to vasopressin (antidiuretic hormone
in mammals) influenced the time interval between two contractions of contractile
vacuole [148], however, vasopressin itself did not it. Vasopressin decreased the
phagocytotic activity [149] in contrast to oxytocin, which – without some pretreat-
ment – was not effective. However, its analogue, isotocin was very effective
[150]. These hormones have a negative chemotactic effect on Tetrahymena [151].

Steroid hormones

Steroid hormones are able to decrease the growth of Tetrahymena [152,
153]. The phagocytotic capacity is reduced under the effect of deoxycorticoste-
rone, while dexamethasone and prednisolne stimulated it [154]. Testosterone, pro-
gesterone and dexamethasone are concentration dependently chemoattractant,
while hydrocortisone and estradiol are chemorepellent [155]. A suppression of the
fatty acyl coenzyme A desaturase system by dexamethasone was observed [156,
157].

Biogenic amines

Serotonin (5HT) influences phagocytosis [72, 158], cell growth [159] and
ciliary regeneration [160, 161]. Histamine also regulates phagocytosis through the
H1 receptor [162]. Concanavalin A counteract with the effect of histamine [76].
Histidine, the basic amino acid and histamine similarly influence phagocytosis
[163]. Presence of histamine or serotonin enormously decreases insulin binding
[69]. Treatment with histamine or serotonin elevates EGF content of the cells
[164]. Histamine as well, as serotonin in low concentrations significantly en-
hanced the synthesis of a steroid, digoxin [165]. The effect of hormones is differ-
ent in tryptone-yeast medium or in salt solution [131].

Epinephrine influences the glucose metabolism of Tetrahymena [166], the
phagocytotic capacity [167] and an adrenergic system is supposed [22, 23].

Other hormones

Atrial natriuretic peptide (ANP) can induce the discharge of sodium ions
and it has a chemoattractant effect [168]. Human cytokines interleukin 3 and 6 in-
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crease the multiplication of cells and also their insulin binding [169]. Endothelins
(ET) were chemorepellent (ET2, ET3) or chemoattractant (ET1) and bradikinin
was also chemoattractant [170]. Cytokines have a concentration-dependent
chemotactic effect [171]. Tumor necrosis factor alpha (TNF alpha) influenced
phospholipid metabolism [172]. Melatonin influenced cell division, phagocytosis
and chemotaxis [173]. Thyroxine and its precursors increase the phagocytosis,
however, their effects are less than the effect of histamine [167]. Thyroxine and its
precursors also enhance the multiplication of the cells [174]. Lectins – some of
which are bound to hormone receptors [175] – influence chemotactic selection
and imprinting [176].

The tetrapeptide hormone tuftsin, which is an activator of thyrotropin re-
leasing hormone and thyrotropin secretion [177] is also a natural activator of
phagocytes [178]. It stimulates the phagocytic activity of Tetrahymena [179] and
influences chemotaxis [180, 181].

General hormonal effects (stress)

Tetrahymena is very sensitive to different stress factors which influences
– in men – the whole endocrine system [182]. In Tetrahymena this changes not
only membrane lipids [183], histone phosphorilation [184] as well, as gene ex-
pression [185, 186], but also the hormonal system of it, is activated by stress.
Acute stress caused by heat, formaldehyde, ethanol or higher salt concentration el-
evated hormone (ACTH, endorphin, serotonin and triiodothyronine) concentra-
tion in the cells [187]. Long-lasting starvation increases its hormone (endorphin,
ACTH, insulin, serotonin, histamine and triiodothyronine) levels [10]. Insulin
binding is also touched by stress [36, 69].

Conclusions

The hormonal system of Tetrahymena

It seems to be clear that the unicellular Tetrahymena has a complete hor-
monal system. Hormones are produced by it, hormone receptors are present in the
ciliary and nuclear membrane and second messengers as well, as signal pathways
are functioning [3, 4]. The question is, what is the function of this system inside
the cell or between the cells, whether it is needed for the life at this unicellular
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level, or it is only the result of sophisticated methods which can be used for dem-
onstrating these elements. The completeness of the hormonal system and the com-
plexity of it allows to surmise, that this system is necessary for the life of
Tetrahymena.

Tetrahymena is a single cell and at the same time it is an organism
[188–190]. It has all of the constituents which are characteristic to an organism, in
a single cell. However, the presence of hormonal system in it is very interesting,
considering the complexity of the hormonal system in multicellulars, where one of
the cell types produce the signal molecule and others accept this. This is impossi-
ble in a single celled organism. However, there is such a possibility, if we consider
the Tetrahymena population as an organism, where could be members which pro-
duce a hormone and others react to it. However, the receiver of the hormone in one
occasion could be the producer of the same hormone in other occasion or this situ-
ation also could be at the same time. This means that two possibilities are at our
disposal: 1. the hormones produced by the cell effect the same cell or 2. the hor-
mone produced by a cell influences an (or more) other cells. In higher ranked or-
ganisms autocrine regulation is a well-known notion and it functions in a closed
community, however, in Tetrahymena which is living in a broad watery milieu
this seems to be meaningless. So, we have to suppose the second variation: the
Tetrahymena population is the community which is adequate to a cell community
of a higher ranked organism and the hormonal regulation is working inside it. In
this case one or more members of the given population are the senders (regulators,
which produce and secrete the hormone) and other ones are the receivers, the re-
ceptors of which bind the hormone and as a consequence, the receptor bearing cell
reacts to the signal. These receptors are extremely sensitive, a hormone in 10–21 M
concentration can activate the cell’s machinery, and in this concentration only a
few molecule are present in the neighborhood of the cell [125].

The acceptance of intercellular communication’s theory is supported by the
presence, secretion and functions of pheromones. These are extracted from
Euplotes and Blepharisma and were thoroughly studied. They have very impor-
tant role in the growth and chemoattraction of these cells [188–190] and can act
also to Tetrahymena [191]. There is a possibility that the hormones found in Tetra-

hymena also have pheromone-like role.
The exogenously given hormones influence many different functions of

Tetrahymena. These functions are the movement (swimming), chemotaxis,
phagocytosis, excretion, ciliary regeneration, hormone production, and cell divi-
sion etc., what shows that practically all important life functions studied are
touched by hormonal treatments. In addition one of the hormones (insulin) has a
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justified life saving function, and it is not known what other hormones bear this ca-
pacity as this was not studied till now. This allows the supposition that hormones
have a very important role in the life of Tetrahymena. As a free-living organism,
Tetrahymena is exposed to stress frequently and this influences its hormon-house-
hold (production and sensitivity) similar to the stress-effects in higher ranked ani-
mals [192]. It is feasible that hormones produced by stress in an altered quality and
amount, alarm the Tetrahymena population (other cells) for escape, which saves
the life of the population as a whole.

In Tetrahymena, almost all of the vertebrate hormones were found, which
were searched at all. Superficially studied it could mean that the unicell “knows”
more, than an endocrine cell of a higher organism. However, it is not right. An en-
docrine cell, e.g. an insulin producing cell of a mammal also have the genes for
producing each hormone, but these have been blocked during the ontogenetic de-
velopment and only the “specific one” is in function. This is well demonstarted by
studies, when insulin was found in a lot of non-pancreatic cells [192–194]. How-
ever, in multicellulars, the distribution of functions requires the repression of
genes in different cell types. In Tetrahymena the hormone-genes are not closed
and they can instruct the machinery for producing each hormone.

It seems not to be likely that the very broad palettes of hormones which can
be produced by the Tetrahymena are used in the intercellular communication.
However, it is not known what are important for its life indeed. Solely insulin is
known as a life-saving factor however, we do not know why and how it is. It is
known what hormones influence physiological processes, but it is not known
whether these are needed for them, or they only do it, if we arteficially (exoge-
nously) give them to the cells. This exactly means that Tetrahymena have the ca-
pacity for producing and receiving all of the hormones as well as to react to them
and this is very important from the point of view of hormone and receptor evolu-
tion. It was supposed earlier that hormones and receptors appear earlier than the
endocrine system itself [195]. However, it is not only a possibility that Tetra-

hymena utilizes the hormonal system physiologically, as there are facts which
support it. These are:

1. The high sensitivity of hormone receptors. These receptors are very sen-
sitive [190], they are able to sense such a low hormone concentration, as 10–21 M
[125], when only few molecules are present around the cell. Considering that the
mammalian hormone receptors bind hormones in 10–6–10–8 M concentrations, it
makes likely that the Tetrahymena receptors are “constructed” for an open, watery
life-mode. The dilution of the hormone which is produced by a Tetrahymena pop-
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ulation in natural conditions is very high, which requires the also very high sensi-
tivity of receptors.

2. The justified life-saving effect of insulin. This hormone, which is pro-
duced, stored and secreted by Tetrahymena, helps its survival when the concentra-
tion of cells is extremely low. If the cell number can decide between life and death
in a fluid milieu, which contains food enough, the significance of growth factors
must be supposed. These factors could be found among the hormones and these
are insulin and perhaps other hormones.

3. The elevation of hormone production during stress. If the life of a single
Tetrahymena, or the life of the population is treatened by stress, some factors are
needed which helps the sustenance of life by escape or proliferation. Insulin is
known as life saving factor, however, the role of other hormones is also not ex-
cluded, as some of these hormones help the “survival”, because T3 enhances
growth, histamine and serotonin increase phagocytosis etc.

4. The hormonal imprinting. When an exogenously given hormone meets
Tetrahymena at first occasion hormonal imprinting develops. The cell memorizes
the encounter and this memory is transmitted to hundreds of progeny generations
[1, 3]. Some permanent epigenetic change happens, possibly influencing
DNA-methylation and this transgenerationally affects the receptor’s binding ca-
pacity [196]. This epigenetic alteration is unthinkable without supposing the use
of the hormonal machinery.

5. The hormonal network. The hormones, which can be produced by the
Tetrahymena, influence the binding and production of each other in picomolar
concentrations [197]. This for itself strongly supports the utilization of hormones
by the unicell. However, the presence of trop-hormone – target hormone pairing is
more justifiing. In higher ranked animals the hypophyseal regulation of target hor-
mones’ production is a rather sophisticated function. It is very surprising that
Tetrahymena has this function. Exogenously given thyrotopic hormone (TSH)
regulates triiodothyronine (T3) synthesis in Tetrahymena. At the same time, chori-
onic gonadotropin, the other (chemically related) pituitary hormone mimics this
function, as it is done in vertebrates [198].

6. The presence of a complete signal mechanism in the cell. This means that
not only hormones or hormone receptors or signal pathways are present in a cell,
but hormones + receptors + signal pathways which are interconnected. This autho-
rized the researchers to surmise adrenergic [22], serotonergic [7] and opioid [199]
mechanisms in Tetrahymena.
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Unicell-induced thoughts on the evolution of endocrine system

For human beings the “hormone” is a well-defined molecule, a regulator of
certain well defined organ or function, which is working and transported in a
closed system (e.g. blood circulation). However, for the Tetrahymena the
exogenously given hormone is a molecule, one of the huge amount of molecules
around it, which can bound to a receptor. The recognition of these molecules is
very important for the cell, as they could be useful (e.g. nourishments) or harmful
(toxic substances), which endanger the life of the cell. The recognition of a hor-
mone is the recognition of one of such a molecules, however, this can induce cer-
tain changes of the cell, which produce specific reactions. At this unicellular level
hormones must have been selected from the oceans of molecules, as a molecule
which is suitable for provoking specific reactions of the cell. It is likely that in the
beginning of the evolutionary process, membrane molecules and to be hormones
would be independent from each other and later, when their suitability for con-
necting – and the useful effect of this – was cleared, became the membrane struc-
ture to receptor and the to be hormone, to hormone. However, the today Tetra-

hymena bears preformed receptors for hormones, as it was shown in the case of in-
sulin, which can specifically recognize the hormone, and the receptor as well, as
the hormone have a very similar character to the vertebrate ones. It is not known
whether the other hormones (also produced by Tetrahymena) have preformed re-
ceptors or not.

It is not clear how the membrane patterns, which are suitable for being re-
ceptors are selected during the evolution. However, it was absolutely needed, as
receptors are the main prerequisite to the adaptation to the environment. Koch’s
theory [200], combined with the hormonal imprinting [1, 3] can give some expla-
nation on the development of the receptor–hormone connection. According to
Koch, in the unicells’ plasma membrane there is a continuous change of mole-
cules, always other molecules are building in and submerged and this gives the
possibility for selection. Among these molecules are not complete receptors but
there are parts of them, which can be combined in the plasma membrane by
chance. If such a combination is taking place in the presence of an exogenous hor-
mone this could be fixed epigenetically, by methylation of DNA [201, 202]. This
event could explain the mechanism of selection of membrane structures for recep-
tors and molecules for hormones. However, only the fixation by methylation –
during imprinting – is justified, the others are suppositions.

The absence of steroid hormones from the repertory of Tetrahymena hor-
mones is understandable [44, 45]. These hormones are not soluble in water, so
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Tetrahymena cannot use them for transmitting information intercellularly. How-
ever, the hormone as well, as receptor formation can be provoked by hormonal im-
printing. This means that Tetrahymena has the capacity for producing steroid hor-
mones, but it is not needed in normal conditions. The induced steroid receptors are
present in the plasma membrane, what makes probable that at the beginning of the
evolution of the endocrine system the membrane perception was the characteristic
(or only) form and later some membrane receptors have been engulfed into the cy-
toplasm and finally into the nucleus.

It has to be supposed that the present-day Tetrahymena is not identical with
the ancient one, consequently it is not sure that in the ancient conditions the hor-
monal system was also present and it is not a result of the evolution of Tetra-

hymena. However, the similarity of hormones and receptors (as well as signal
pathways) of the present-day Tetrahymena to that of mammals, makes likely that
the multicellular evolution used the unicellular hormonal system as a model for
that of multicellulars [138]. The present-day mammals are not originated from
present-day unicellulars, however, their hormonal systems are very similar. An-
other possibility is that the hormonal evolution of Tetrahymena used the same way
as that of the evolution of multicellulars, reaching to the same level, however, this
is not likely.

While Tetrahymena can differentiate between related hormones – as e.g.
serotonin and 5-hydroxyindoleacetic acid –, it is not able to differentiate well be-
tween the amino acid hormone and the basic amino acid [3]. This could mean that
the hormone receptors developed from the amino acid (nourishment) receptors
and could explain why all of the amino-acid and peptide hormones studied have
receptors in Tetrahymena [203]. However, there are more important amino acids
from the point of view of receptor development as e.g. proline [204]. In addition,
studying thyroxine and its prescursors [174] it was cleared that the precursor more
intensely promoted growth than the vertebrate hormones T3 or T4. This makes
likely that there is a hormone evolution and at lower levels of phylogeny the hor-
mone-precursors are more effective. However, the hormone character is decisive
as the effect of diiodotyrosine was stronger, than that of monoidotyrosine. This
seems to be right in the case of thyroxin however, it is not right in the case of sero-
tonin, which is not only a vertebrate, but a universal hormone.

In Tetrahymena the “urinary organ” is the contractile vacuole. This is sensi-
tive for oxytocin. In mammals the oxytocin-related vasopressin is the antidiuretic
hormone. It seems to be likely, that oxytocin (in mammals) was more suitable for
regulating other functions (e.g. delivery) and vasopressin was undertaking the su-
pervision of kidney.
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If there is a hormonal network between the members of the Tetrahymena

population, this could be the base of the hormonal network in higher ranked ani-
mals [196]. If all of the components of a hormonal system are present at an open
unicellular level [1, 3, 204], the only requirement has been during the further evo-
lution to combine these elements in a closed condition.

Histamine and its (H1) receptor is present in Tetrahymena and this hormone
can influence different indexes. Histidine decarboxylase (HDC) is the enzyme
which synthesize histamine from the amino acid, histidine. The HDC gene is pres-
ent in Tetrahymena and its base sequence is similar to that of mammals. In addi-
tion, this sequence is rather similar to that of the men, than to that of rat. Consider-
ing the evolution of unicells, Tetrahymena, as a ciliate is a top-product, as it is the
human being in the mammalian evolution. It would be difficult to conclude to a
parallel evolution of unicells and multicells, however, the similarities are interest-
ing.
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